Murine double minute 2, a potential p53-independent regulator of liver cancer metastasis

نویسندگان

  • Atul Ranjan
  • Kaustav Bera
  • Tomoo Iwakuma
چکیده

Hepatocellular carcinoma (HCC) has emerged as one of the most commonly diagnosed forms of human cancer; yet, the mechanisms underlying HCC progression remain unclear. Unlike other cancers, systematic chemotherapy is not effective for HCC patients, while surgical resection and liver transplantation are the most viable treatment options. Thus, identifying factors or pathways that suppress HCC progression would be crucial for advancing treatment strategies for HCC. The murine double minute 2 (MDM2)-p53 pathway is impaired in most of the cancer types, including HCC, and MDM2 is overexpressed in approximately 30% of HCC. Overexpression of MDM2 is reported to be well correlated with metastasis, drug resistance, and poor prognosis of multiple cancer types, including HCC. Importantly, these correlations are observed even when p53 is mutated. Indeed, p53-independent functions of overexpressed MDM2 in cancer progression have been suitably demonstrated. In this review article, we summarize potential effectors of MDM2 that promote or suppress cancer metastasis and discuss the p53-independent roles of MDM2 in liver cancer metastasis from clinical as well as biological perspectives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy

The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...

متن کامل

Integration of DNA Damage and Repair with Murine Double-Minute 2 (Mdm2) in Tumorigenesis

The alteration of tumorigenic pathways leading to cancer is a degenerative disease process typically involving inactivation of tumor suppressor proteins and hyperactivation of oncogenes. One such oncogenic protein product is the murine double-minute 2, or Mdm2. While, Mdm2 has been primarily associated as the negative regulator of the p53 tumor suppressor protein there are many p53-independent...

متن کامل

Conditionally replicative adenovirus expressing degradation-resistant p53 for enhanced oncolysis of human cancer cells overexpressing murine double minute 2.

Conditionally replicative adenoviruses (CRAd) are under investigation as anticancer agents. Previously, we found that the CRAd AdDelta24-p53, expressing the p53 tumor suppressor protein from its genome, more effectively killed most human cancer cells than did its parent AdDelta24. However, a minority of cancer cell lines poorly responded to the oncolysis-enhancing effect of p53. Here we show th...

متن کامل

TP53 R72P and MDM2 SNP309 polymorphisms and colorectal cancer risk: the Fukuoka Colorectal Cancer Study.

OBJECTIVE Tumor protein p53 gene and its negative regulator, murine double minute 2 homolog are important components for cell-cycle arrest and apoptosis. An arginine-to-proline substitution at codon 72 in the p53 gene is reported to decrease apoptotic potential, while a thymine-to-guanine polymorphism at nucleotide 309, named SNP309, of murine double minute 2 gene increases transcription of the...

متن کامل

The human orthologue of Drosophila ecdysoneless protein interacts with p53 and regulates its function.

Biochemical mechanisms that control the levels and function of key tumor suppressor proteins are of great interest as their alterations can lead to oncogenic transformation. Here, we identify the human orthologue of Drosophila melanogaster ecdysoneless (hEcd) as a novel p53-interacting protein. Overexpression of hEcd increases the levels of p53 and enhances p53 target gene transcription whereas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2016